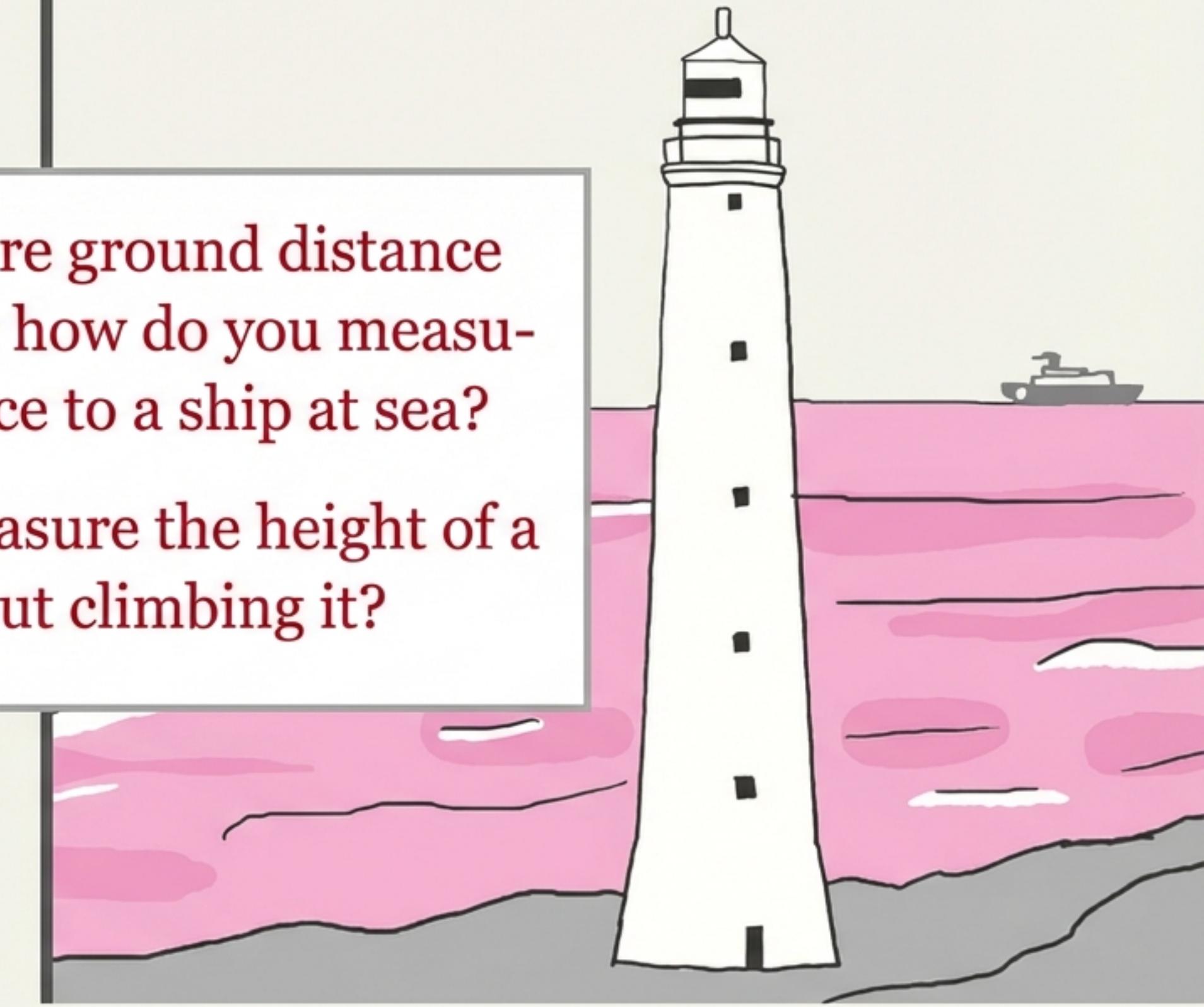


Trigonometry: Measuring the Unmeasurable

A guide to measuring distance without moving.

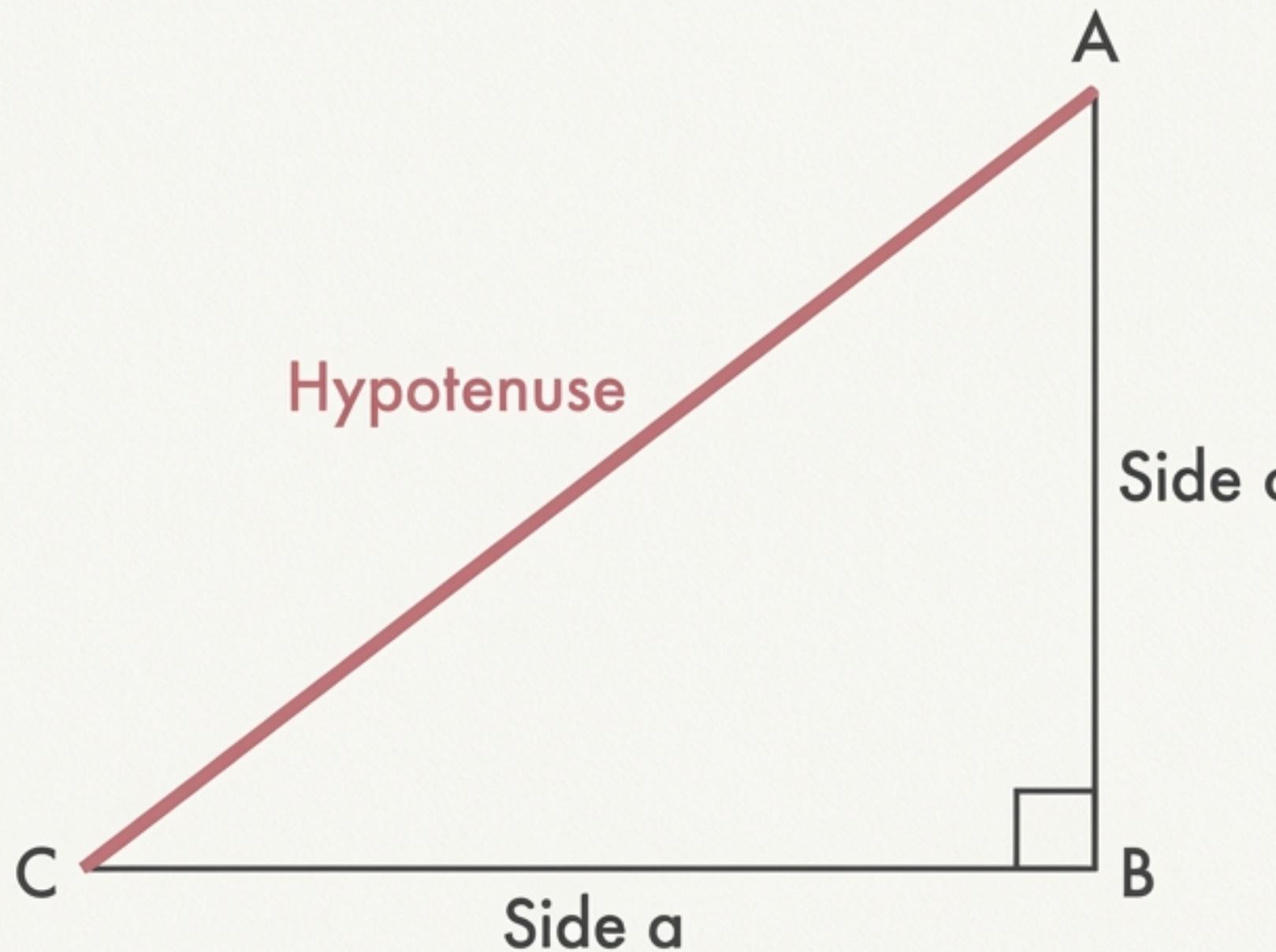
We can measure ground distance with a rope. But how do you measure the distance to a ship at sea?

How do you measure the height of a tree without climbing it?



The answer is Trigonometry. From Greek: Tri (Three) + Gona (Sides) + Metron (Measurements).

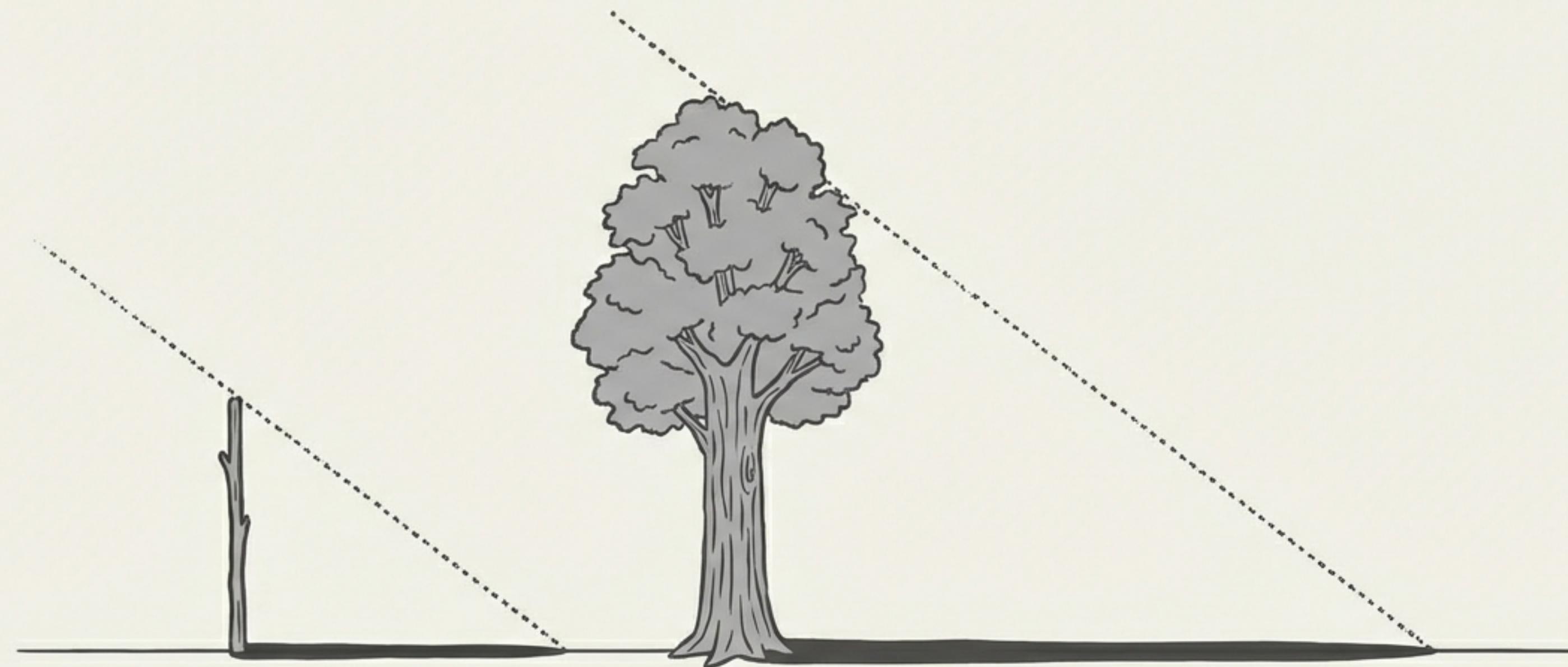
The Foundation: The Right-Angled Triangle



Trigonometry begins here. To measure the unknown, we must first master the relationships within a right-angled triangle.

$$(AB)^2 + (BC)^2 = (AC)^2$$

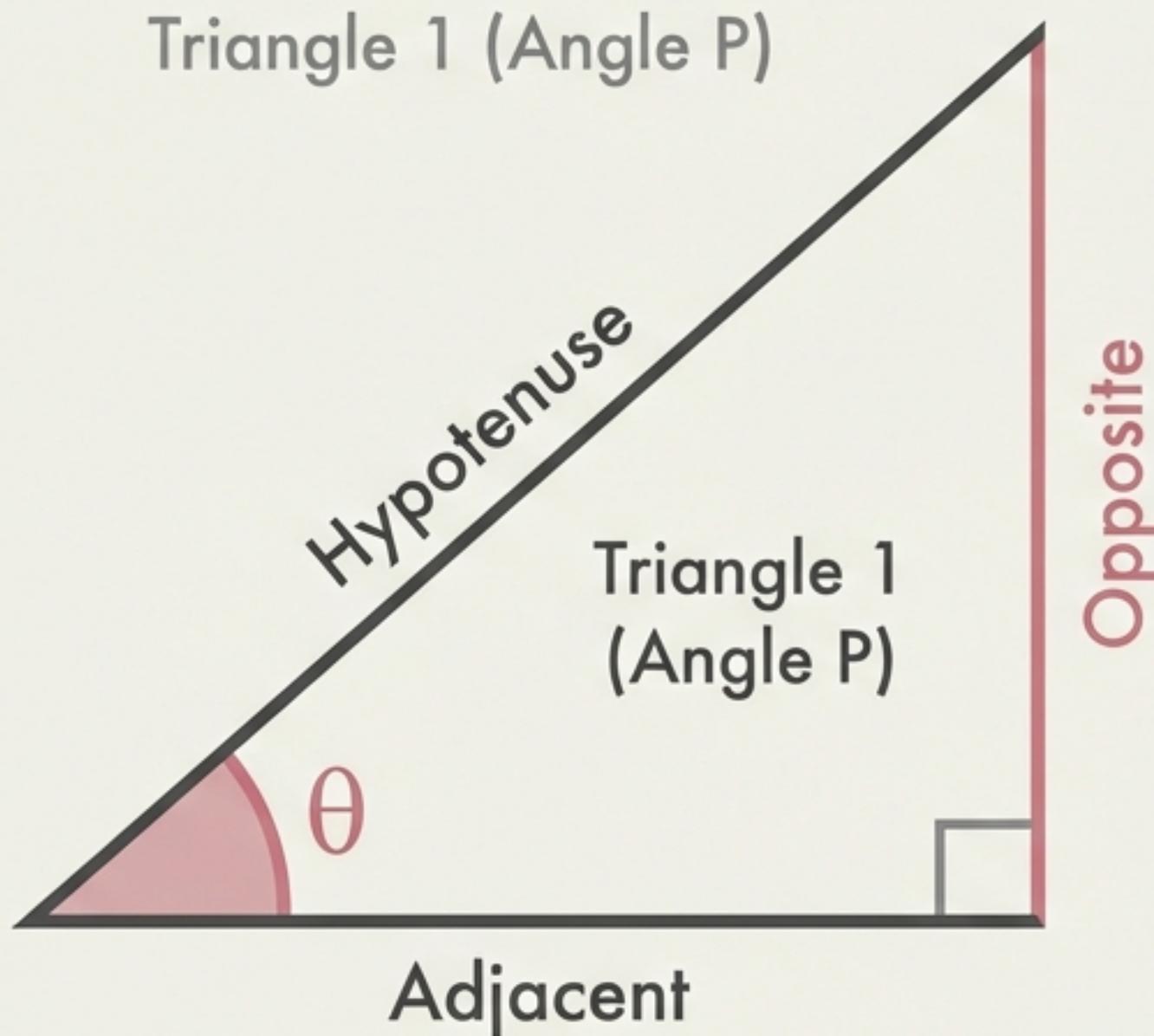
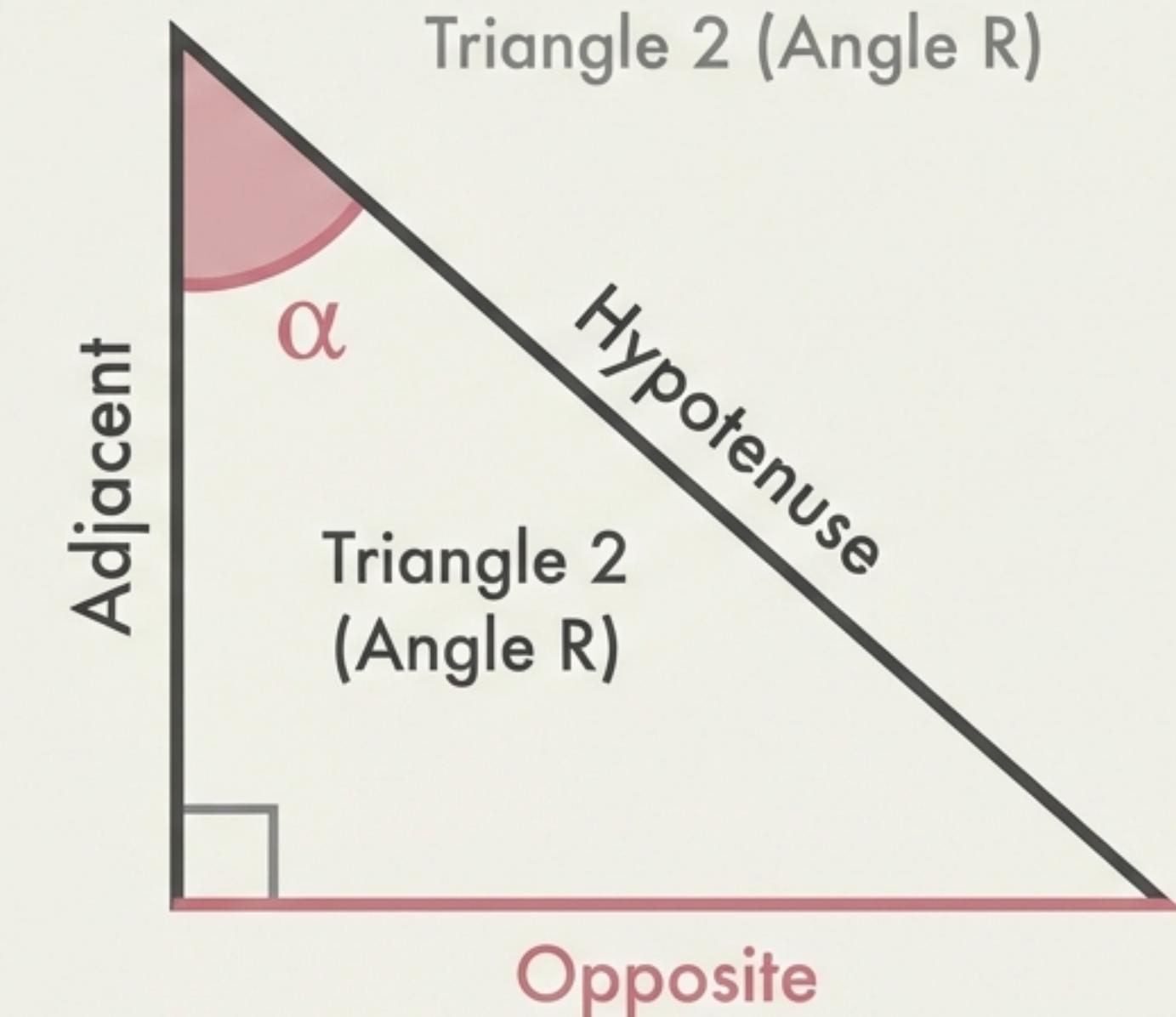
Similar Triangles Unlock the World.



If a stick and a tree intercept parallel sunlight, they form similar triangles (equiangular). Their sides are proportional.

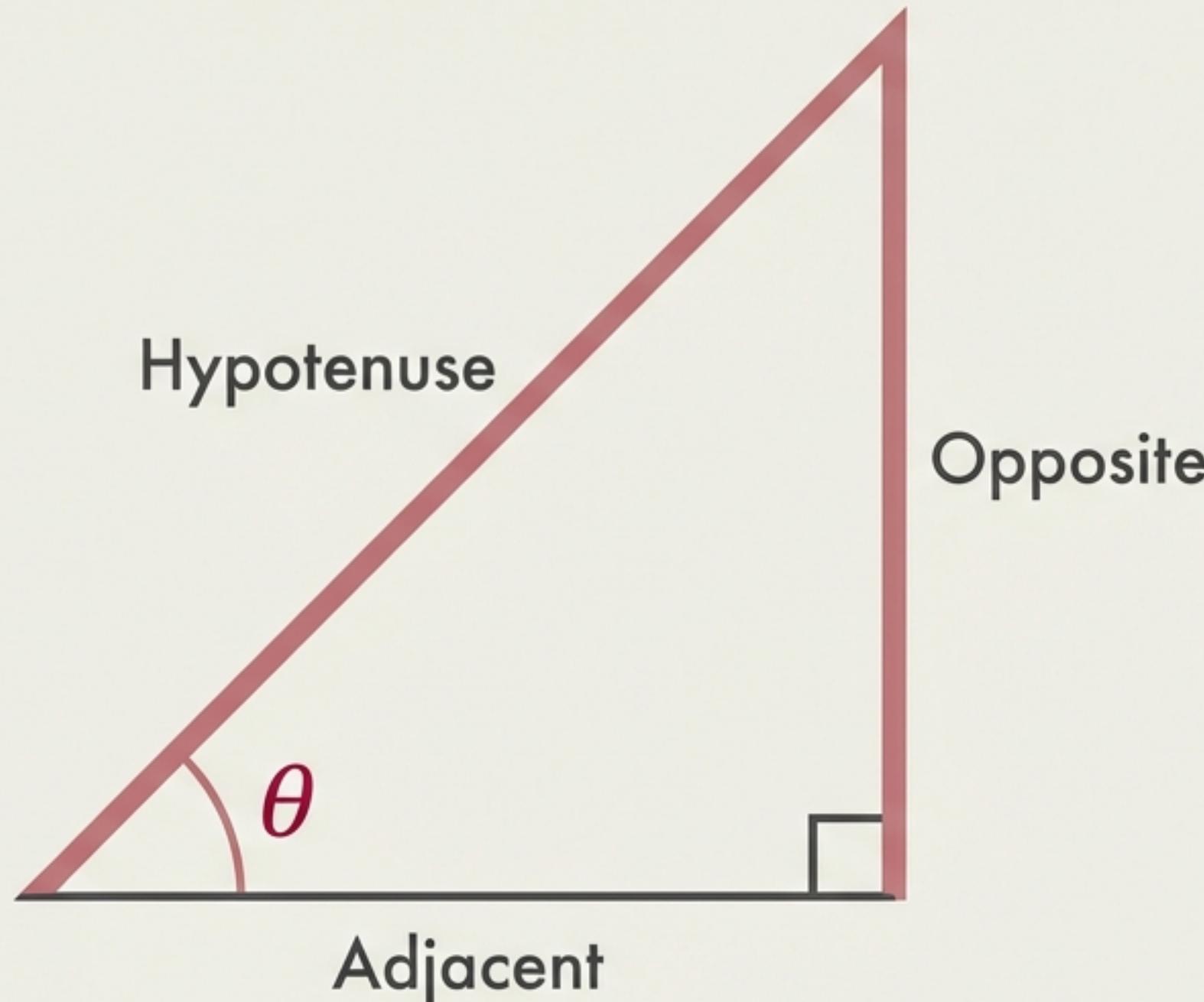
$$\frac{\text{Height of Tree}}{\text{Height of Stick}} = \frac{\text{Shadow of Tree}}{\text{Shadow of Stick}}$$

Anatomy of an Angle



The terms 'Opposite' and 'Adjacent' are relative.
They depend entirely on your perspective.

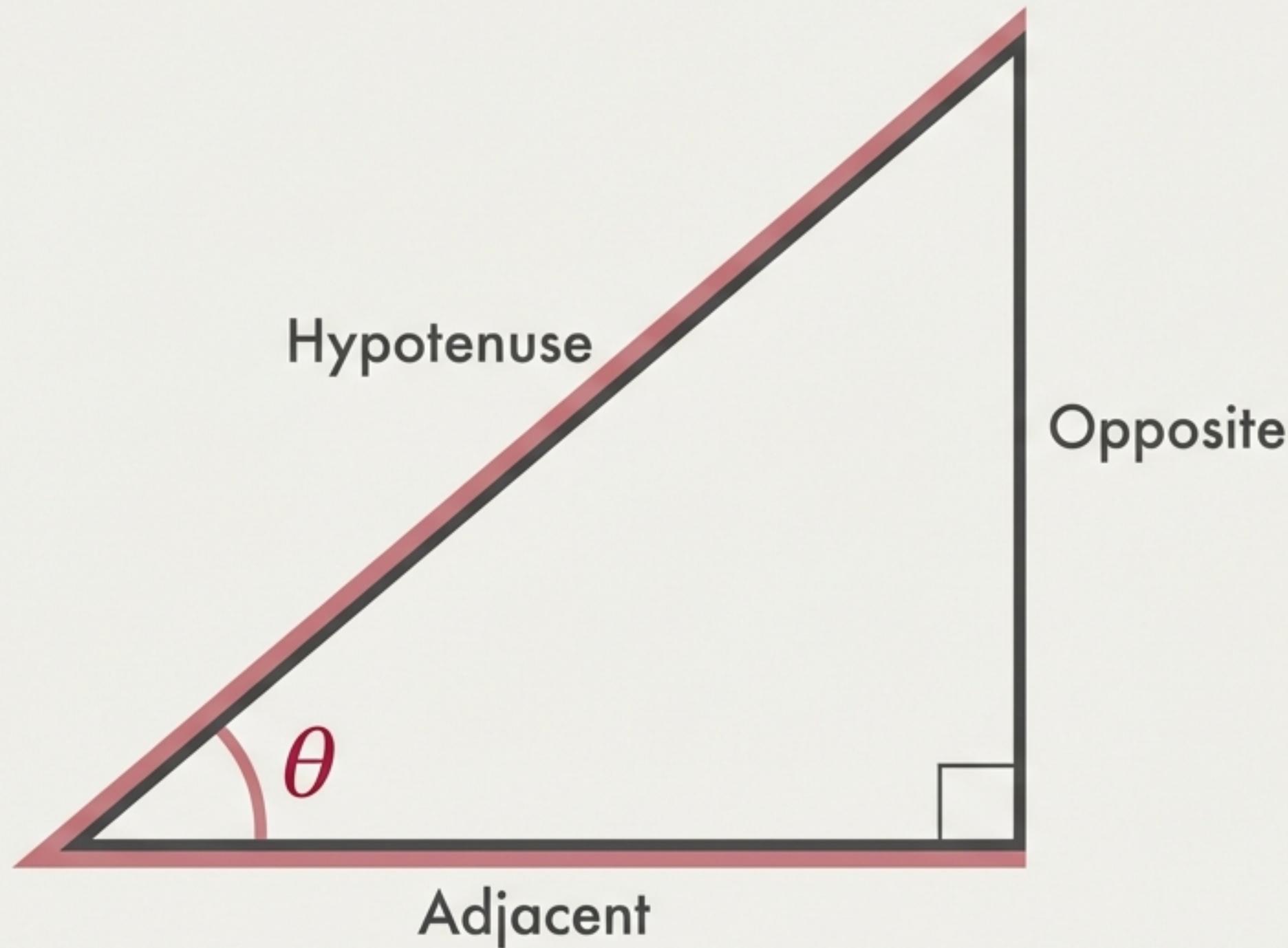
Tool 1: The Sine Ratio



The Sine of angle θ is the ratio of the Opposite side to the Hypotenuse.

$$\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$$

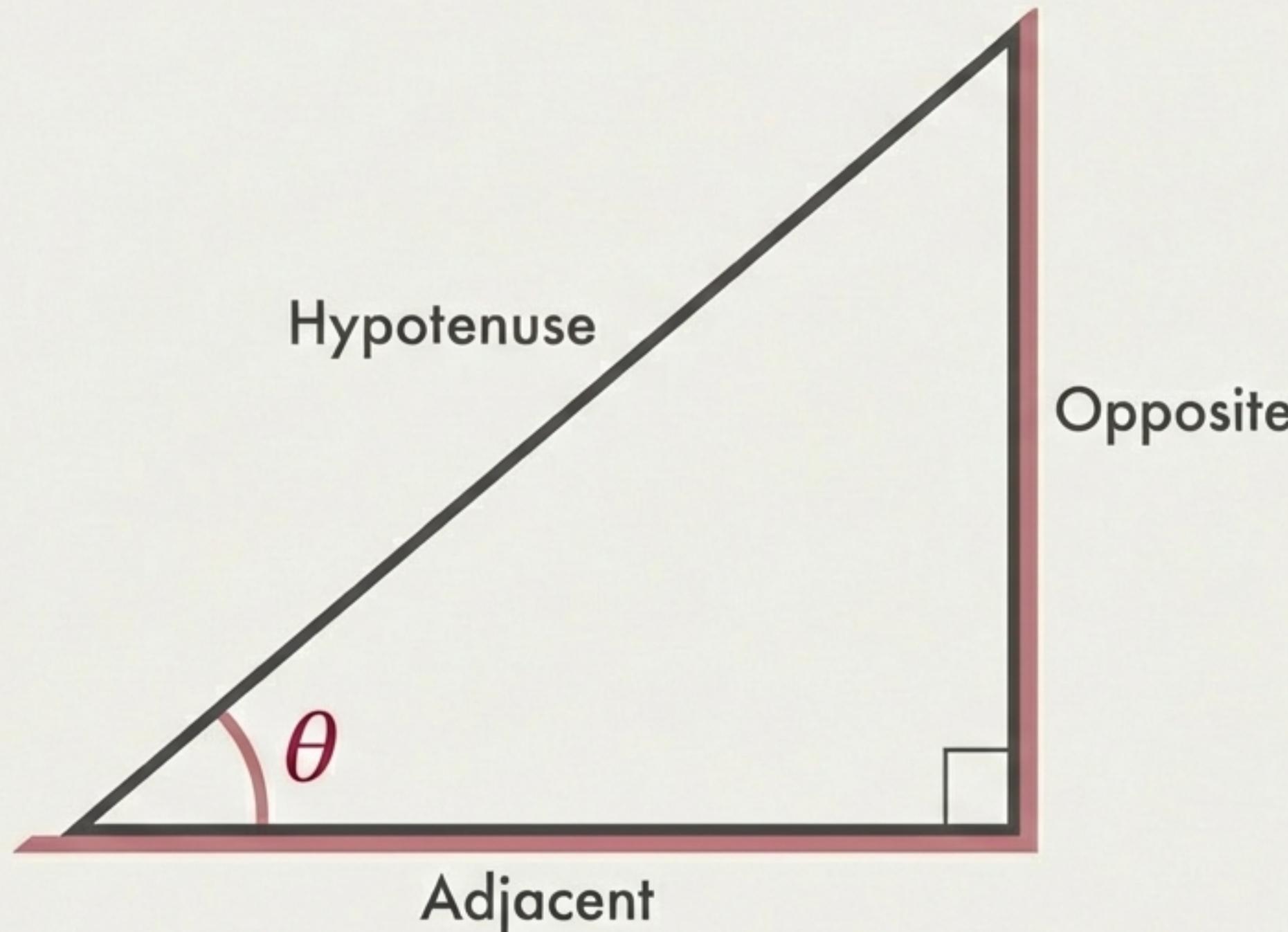
Tool 2: The Cosine Ratio



The Cosine of angle θ is the ratio of the Adjacent side to the Hypotenuse.

$$\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

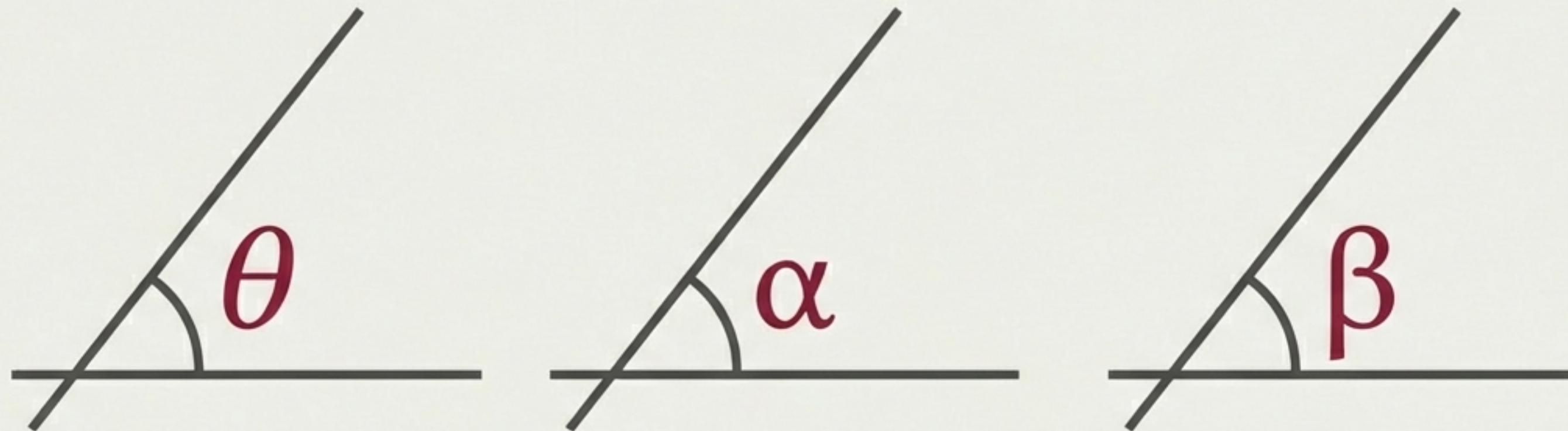
Tool 3: The Tangent Ratio



The Tangent of angle θ is the ratio of the Opposite side to the Adjacent side.

$$\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}}$$

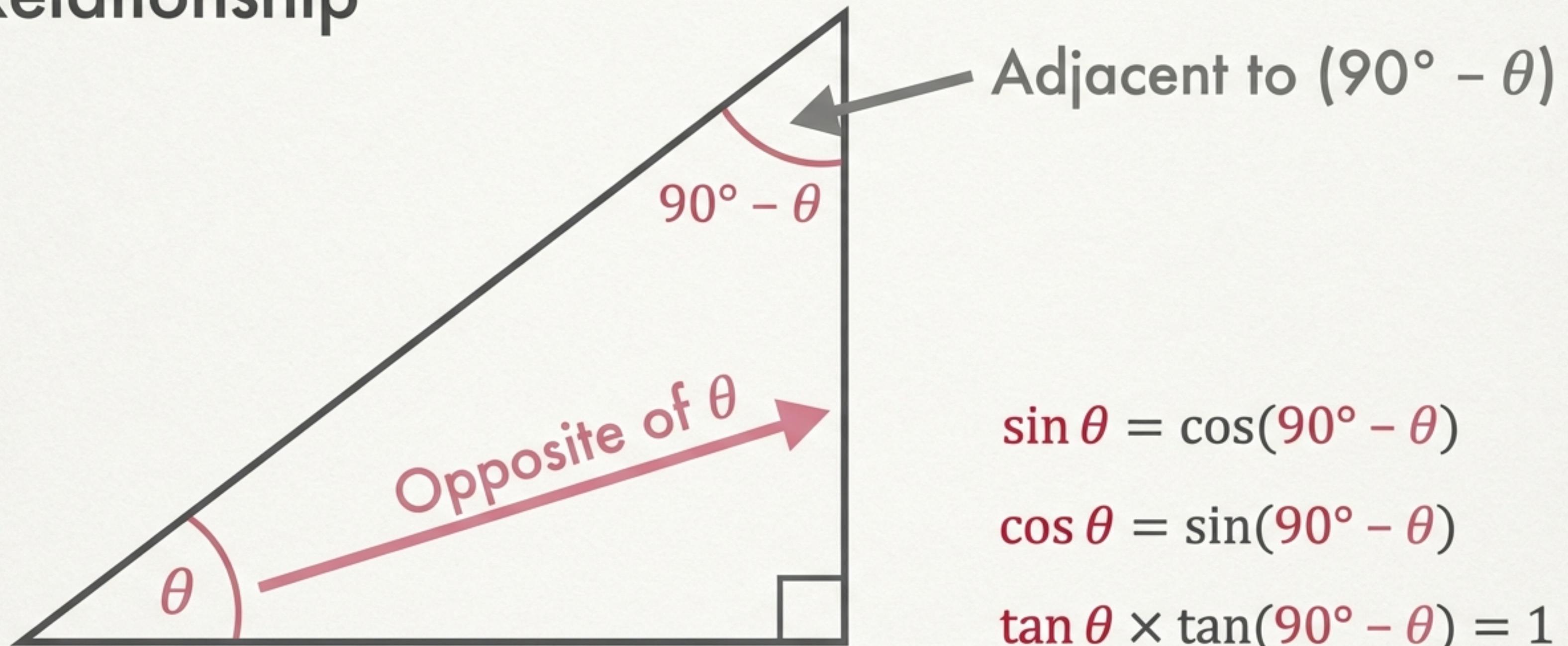
The Language of Angles



In trigonometry, we use Greek letters to denote the measures of acute angles.

$\sin C$ is conventionally written as $\sin \theta$.

The Complementary Relationship Relationship



Advanced Toolkit: Inverse Ratios

Cosecant (cosec)

The inverse of Sine.

$$\text{cosec } \theta = \frac{1}{\sin \theta} = \frac{\text{Hypotenuse}}{\text{Opposite}}$$

Secant (sec)

The inverse of Cosine.

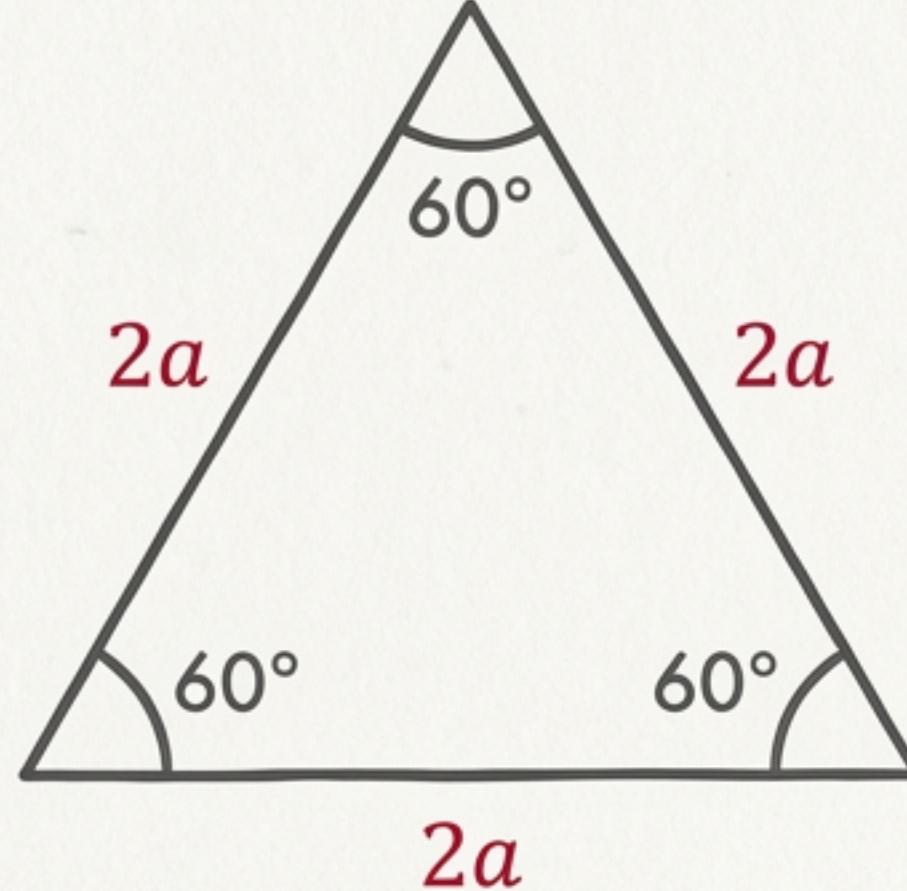
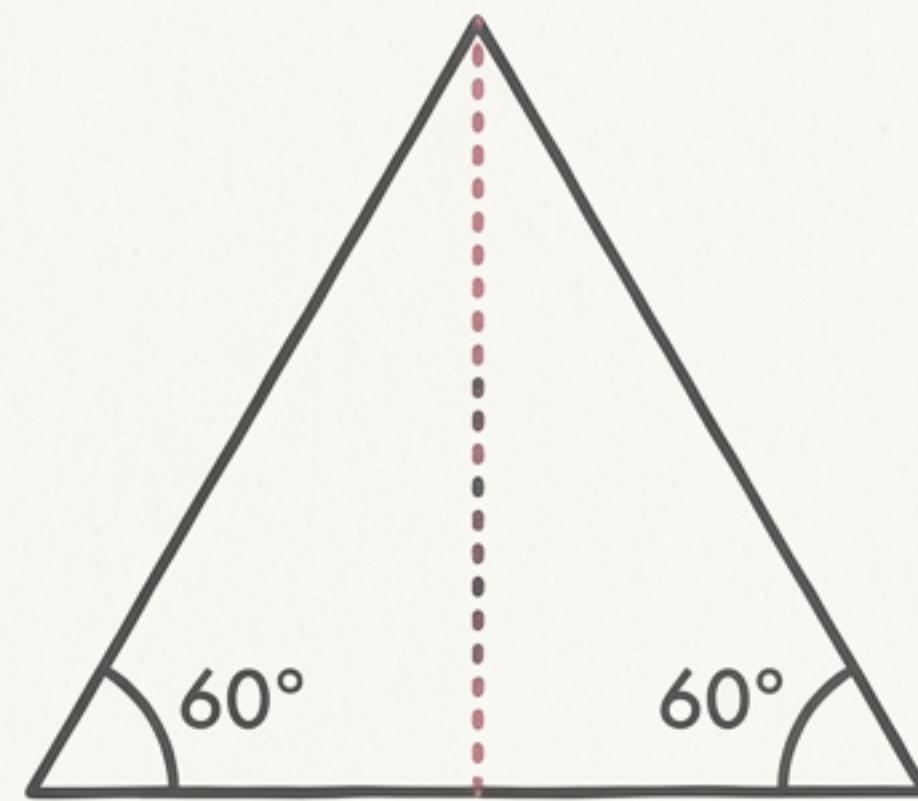
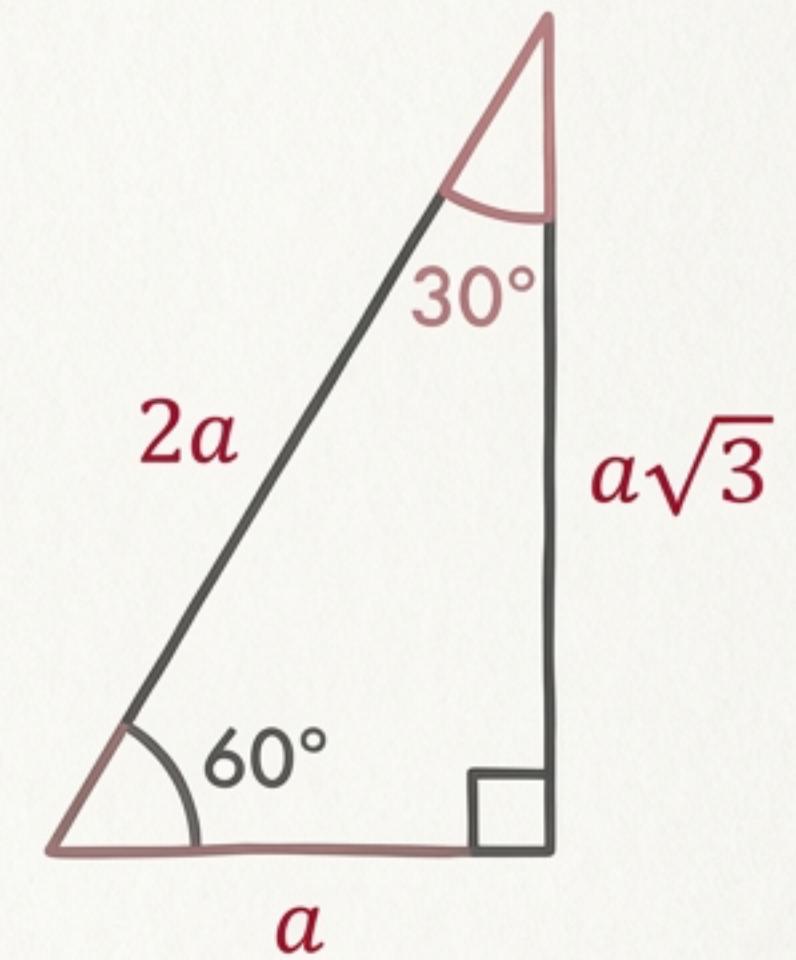
$$\sec \theta = \frac{1}{\cos \theta} = \frac{\text{Hypotenuse}}{\text{Adjacent}}$$

Cotangent (cot)

The inverse of Tangent.

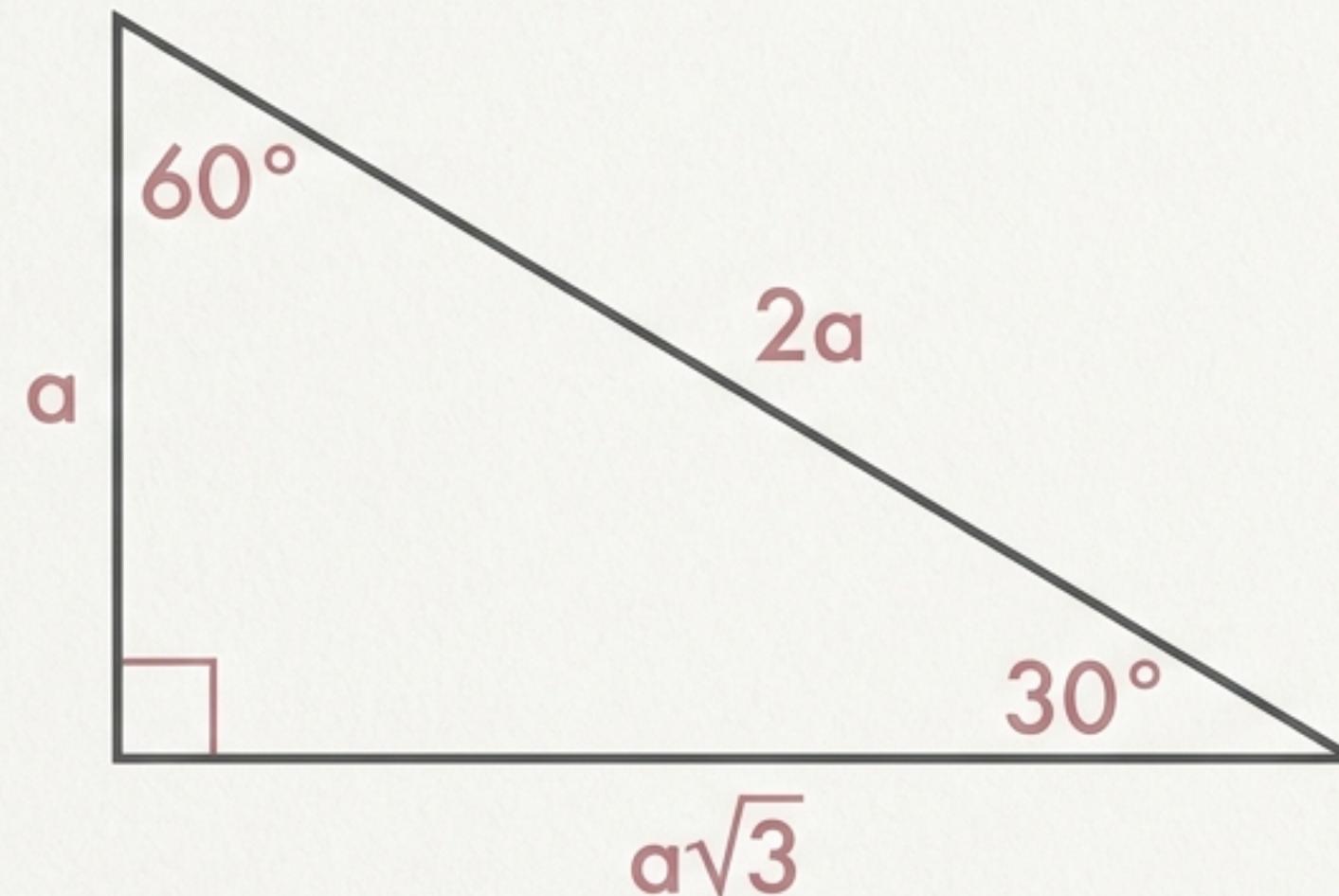
$$\cot \theta = \frac{1}{\tan \theta} = \frac{\text{Adjacent}}{\text{Opposite}}$$

Calibration: Deriving 30° and 60°



By splitting an equilateral triangle, we find the exact dimensions required for 30° and 60° calculations.

The Exact Values for 30° and 60°



30° Values:

$$\sin 30^\circ = 1/2$$

$$\cos 30^\circ = \sqrt{3}/2$$

$$\tan 30^\circ = 1/\sqrt{3}$$

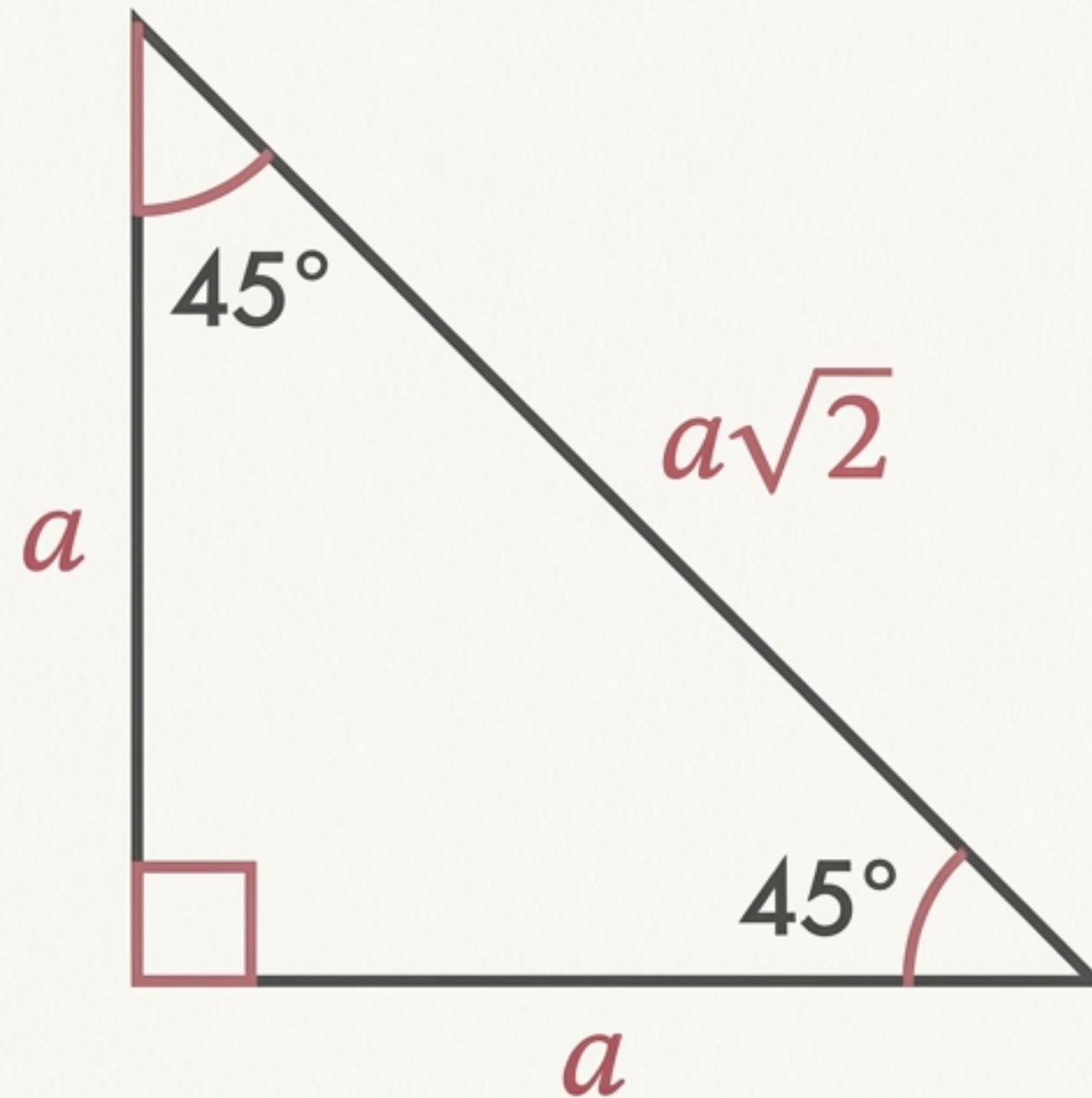
60° Values:

$$\sin 60^\circ = \sqrt{3}/2$$

$$\cos 60^\circ = 1/2$$

$$\tan 60^\circ = \sqrt{3}$$

Calibration: Deriving 45° .



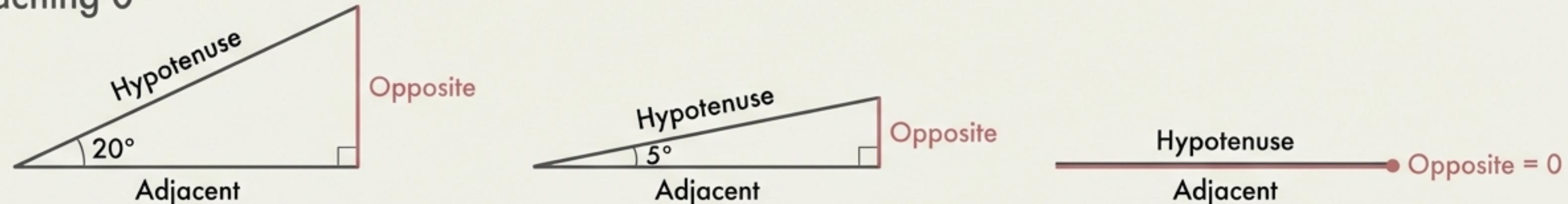
$$\sin 45^\circ = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\cos 45^\circ = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\tan 45^\circ = \frac{a}{a} = 1$$

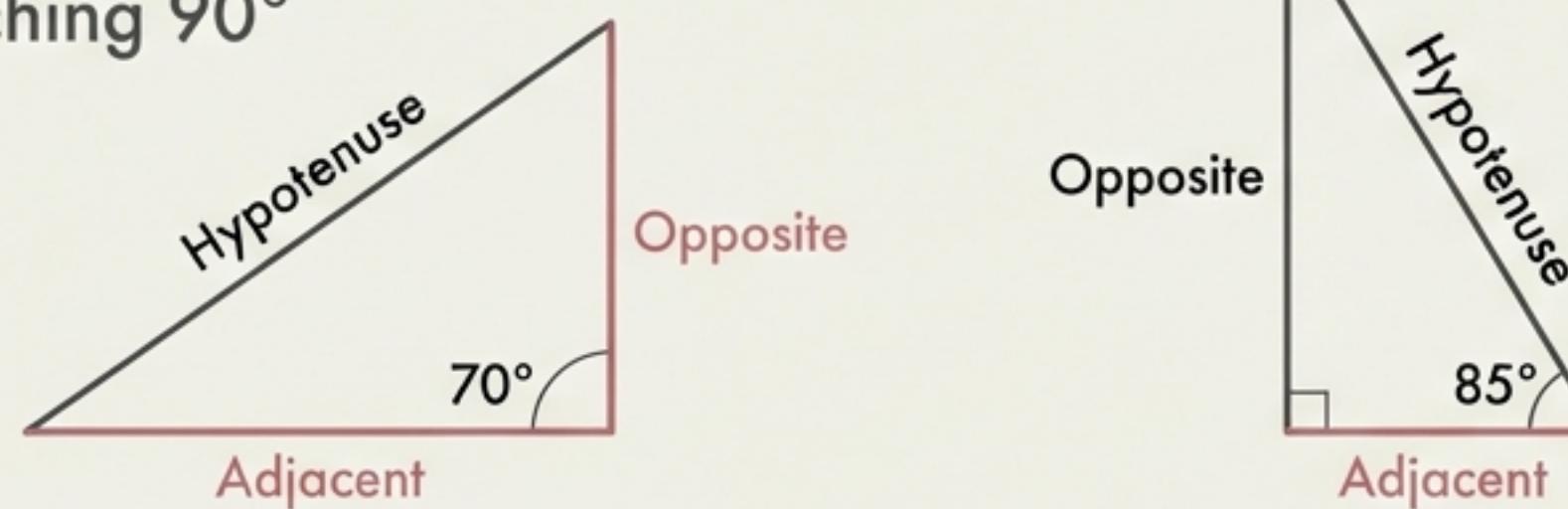
The Limits: 0° and 90° .

Approaching 0°



As angle $\rightarrow 0$, Opposite $\rightarrow 0$. Therefore $\sin 0 = 0$.

Approaching 90°



As angle $\rightarrow 90$, Adjacent $\rightarrow 0$. Therefore $\cos 90 = 0$.

$\tan 90^\circ$ is undefined because division by zero (adjacent side) is impossible.

The Trigonometric Table.

Angle θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\sin 30^\circ = \frac{1}{2}$	$\sin 1^\circ = \frac{1}{\sqrt{2}}$	$\sin \theta^\circ = \frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\cos 3^\circ = \frac{\sqrt{3}}{2}$	$\cos 1^\circ = \frac{1}{\sqrt{2}}$	$\cos 60^\circ = \frac{1}{2}$	0
$\tan \theta$	0	$\tan \theta = \frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

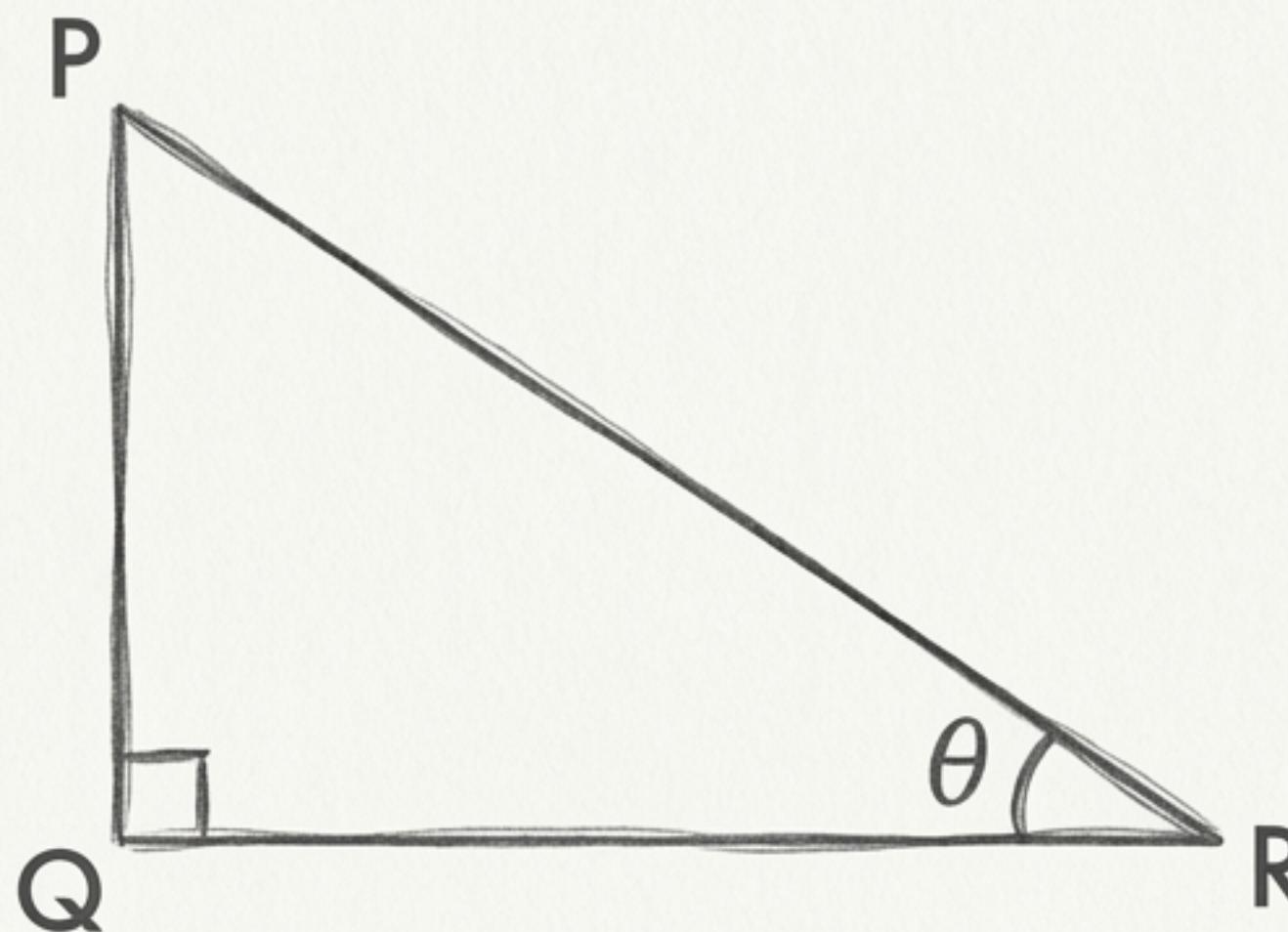
The Fundamental Identity

$$\sin^2 \theta + \cos^2 \theta = 1$$

For any acute angle θ , the square of the sine plus the square of the cosine always equals unity.

Note: $\sin^2 \theta$ is the notation for $(\sin \theta)^2$.

Proving the Identity.



Proof Steps:

1. By Pythagoras:

$$PQ^2 + QR^2 = PR^2$$

2. Divide by Hypotenuse squared (PR^2):

$$\frac{PQ^2}{PR^2} + \frac{QR^2}{PR^2} = \frac{PR^2}{PR^2}$$

3. Group terms:

$$\left(\frac{PQ}{PR}\right)^2 + \left(\frac{QR}{PR}\right)^2 = 1$$

4. Substitute definitions:

$$(\sin \theta)^2 + (\cos \theta)^2 = 1$$

Dusty Rose Crimson Pro

Application: Evaluating Expressions.

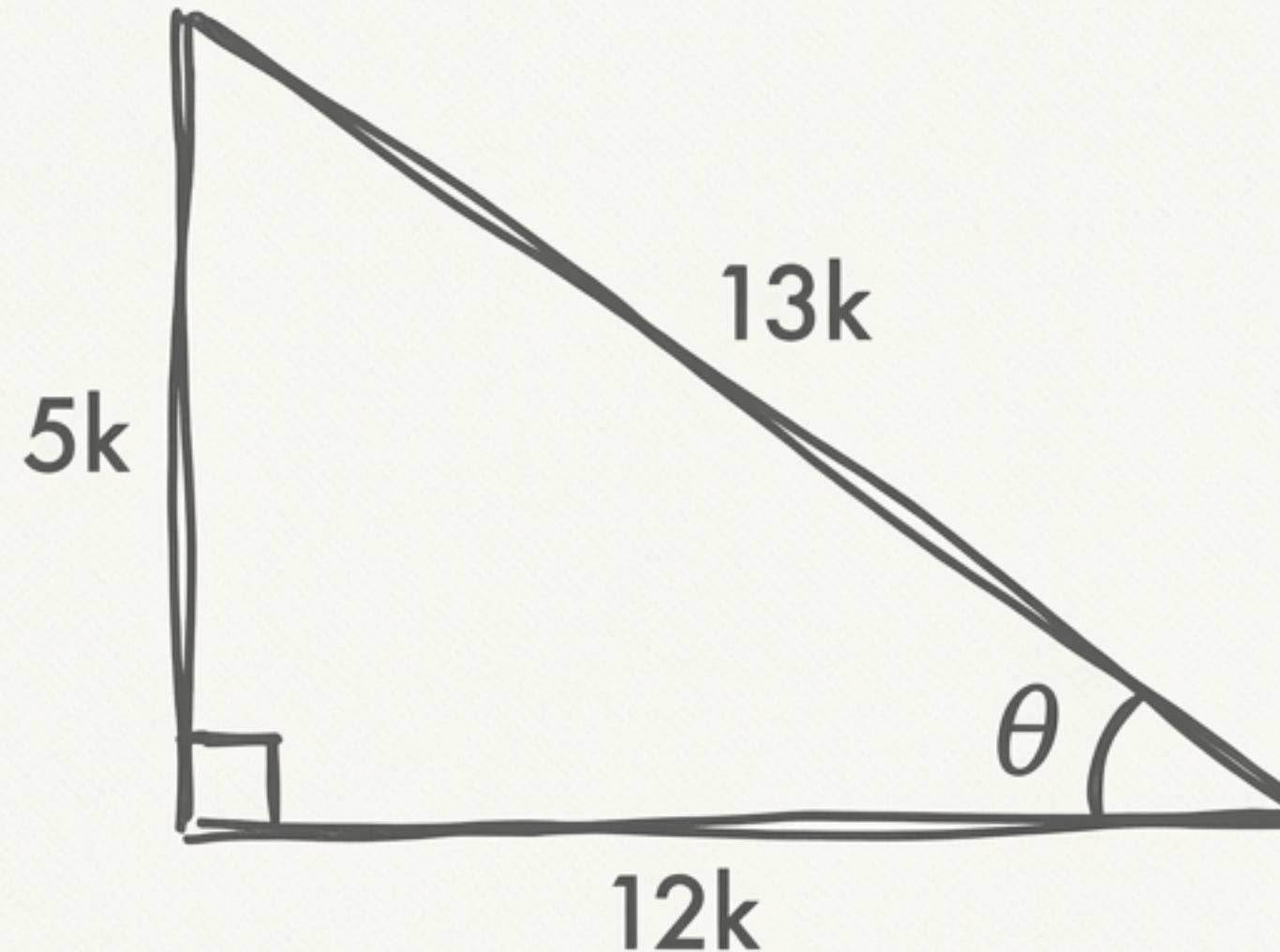
Evaluate: $2\tan 45^\circ + \cos 30^\circ - \sin 60^\circ$

$$= 2(1) + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$$

$$= 2 + 0$$

$$= 2$$

Application: Finding Unknown Ratios.



Given: $\sin \theta = 5/13$.
Find $\cos \theta$ and $\tan \theta$.

Step 1: Use Pythagoras to find the adjacent side.

$$(13k)^2 - (5k)^2 = 144k^2$$

Adjacent = $12k$

Step 2: Calculate Ratios.

$$\cos \theta = 12k/13k = 12/13$$

$$\tan \theta = 5k/12k = 5/12$$

The Toolkit Summary.

Sine Formula

$$\sin\theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{O}{H}$$

Cosine Formula

$$\cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{A}{H}$$

Tangent Formula

$$\tan\theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{O}{A}$$

Pythagorean Identity

$$\sin^2\theta + \cos^2\theta = 1$$

Complementary Rule

$$\sin \theta = \cos(90^\circ - \theta)$$

“From shadows to stars, these ratios allow us to measure the universe.”